2026年2月16日 星期一

金屬泡沫 metal foams 製作方法是將氣泡包裹在熔融金屬內部,形成多孔的、類似海綿的內部網絡。雖然它看起來很脆弱,但這種結構卻異常強大:當受到衝擊時,能量會被分散到數千個微小的細胞壁上,而不是直接穿過。


如果像泡沫一樣輕的材料能夠阻擋像子彈一樣致命的攻擊,那會怎麼樣? 🇺🇸


美國的研究人員一直在開發一種名為金屬泡沫的非凡材料——這種材料極其輕盈,某些版本甚至可以漂浮在水面上,同時又足夠堅固,能夠吸收極端的衝擊力。


金屬泡沫的製作方法是將氣泡包裹在熔融金屬內部,形成多孔的、類似海綿的內部網絡。雖然它看起來很脆弱,但這種結構卻異常強大:當受到衝擊時,能量會被分散到數千個微小的細胞壁上,而不是直接穿過。


在受控的實驗室測試中,某些高性能金屬泡沫已經展現出減緩甚至阻擋彈丸(包括穿甲彈)的能力,其原理是透過可控的斷裂和壓縮來分散動能。


其潛在應用遠不止於軍事防禦領域。科學家們也正在探索金屬泡沫在以下領域的應用:


• 航空航太工程


• 防撞車輛


• 防護性建築材料


• 輕量化結構設計


這項創新代表了現代工程的重大轉變——證明強度並非總是來自重量,而是來自巧妙的結構。

 What if something as light as foam could stop something as deadly as a bullet?

🇺🇸
Researchers in the United States have been developing an extraordinary class of materials known as metal foams — structures so lightweight that some versions can actually float on water, yet strong enough to absorb extreme impacts.
Metal foam is made by trapping gas bubbles inside molten metal, creating a porous, sponge-like internal network. While it may look fragile, this structure is incredibly powerful: when force hits it, the energy is spread across thousands of tiny cell walls instead of passing straight through.
In controlled lab tests, certain high-performance metal foams have shown the ability to slow down or even stop projectiles, including armor-piercing rounds, by dispersing kinetic energy through controlled fracturing and compression.
The potential applications go far beyond military defense. Scientists are also exploring metal foam for:
• aerospace engineering
• crash-resistant vehicles
• protective building materials
• lightweight structural design
This innovation represents a major shift in modern engineering — proving that strength doesn’t always come from weight, but from smart structure.

2026年2月7日 星期六

MIT的物理學家們展示了一種新型磁性,這種磁性有朝一日可能被用來製造速度更快、密度更高、功耗更低的「自旋電子」記憶體晶片。 韓國科學家正在探索一種新方法,該方法有望使癌細胞恢復到更接近正常的狀態,而不是徹底摧毀它們。 這種方法專注於細胞重編程,即靶向關鍵的分子開關以降低癌細胞的惡性行為。 其目標並非損傷周圍組織,而是使細胞功能正常化

 

· 韓國科學家正在探索一種新方法,該方法有望使癌細胞恢復到更接近正常的狀態,而不是徹底摧毀它們。

這種方法專注於細胞重編程,即靶向關鍵的分子開關以降低癌細胞的惡性行為。

其目標並非損傷周圍組織,而是使細胞功能正常化,這有望成為傳統療法的更溫和的補充。


目前,研究結果來自受控的實驗室研究,研究人員觀察到重編程後腫瘤樣活性降低。


專家強調,這並非一種已證實有效的治療方法,在應用於患者之前,仍需進行人體試驗和長期安全性研究。


#癌症科學 #醫學研究 #細胞重編程 #健康創新 #未來醫學 #科學動態

Engineering Facts

Scientists in South Korea are exploring a new method that could push cancer cells back toward a more normal state instead of destroying them outright.

This approach focuses on cellular reprogramming, where key molecular switches are targeted to reduce malignant behavior.

Rather than damaging surrounding tissue, the goal is to normalize how cells function, potentially offering a gentler complement to traditional therapies.

So far, the results come from controlled laboratory studies, where researchers observed reduced tumor-like activity after reprogramming.

Experts stress that this is not yet a proven cure, and human trials along with long-term safety research are still required before it can reach patients.

#CancerScience #MedicalResearch #CellReprogramming #HealthInnovation #FutureMedicine #ScienceUpdates

---

麻省理工學院的物理學家們展示了一種新型磁性,這種磁性有朝一日可能被用來製造速度更快、密度更高、功耗更低的「自旋電子」記憶體晶片。


MIT physicists have demonstrated a new form of magnetism that could one day be harnessed to build faster, denser, and less power-hungry “spintronic” memory chips. https://news.mit.edu/....../physicists-observe-new......