2020年8月31日 星期一

各國 Hyperloop "雄心與夢想"

8.31 我可不樂觀

【未來交通進行式:奇異膠囊】
雖然 #超迴路列車(Hyperloop)早就受眾人矚目,但美國加州超迴路運輸科技公司(HyperloopTT)打造的這個流線型「膠囊車廂」,終於證明 #超高速旅行 將要成為現實。它為穿梭都市的旅程設下 #時速1223公里 的標竿,比一般商用客機還快。
長30公尺的全尺寸車廂,目前正在法國土魯斯長320公尺的軌道準備測試。如果一切順利,明年就會進入首次載客試驗,並以2022年建立第一條商用系統為目標,營運地點可能選在阿布達比。
超迴路膠囊車廂透過在密封的管道內滑行而達到高速,管內以真空泵抽走大部分空氣,以便減少阻力。車廂會利用磁鐵稍微懸浮在軌道上,降低移動時的摩擦力,並由同樣使用磁力的線性感應馬達推動。
超迴路列車號稱是100多年來第一個新的交通工具形態,但仍需克服相當艱鉅的科技挑戰,例如長距離保持管內真空的複雜設計等等。即使如此,現在有許多工程設計人才投入研發,許多公司已開始設計自己的系統,包括維珍超迴路1號(Virgin Hyperloop One)、哈德超迴路(Hardt Hyperloop)和TransPod等。
文/摘自《BBC知識》國際中文版100期,更多資訊請見本期雜誌。



****8.20
很好的全球各國發展簡介。
可以用"Japan"和 "China"等自搜索各國"雄心與夢想"。

ˋ
From Wikipedia, the free encyclopedia
Jump to navigationJump to search

Concept art of Hyperloop inner workings
Hyperloop is a proposed mode of passenger and freight transportation, first used to describe an open-source vactrain design released by a joint team from Tesla and SpaceX.[1] Hyperloop is a sealed tube or system of tubes with low air pressure through which a pod may travel substantially free of air resistance or friction.[2] The Hyperloop could convey people or objects at airline or hypersonic speeds while being very energy efficient.[2] This would drastically reduce travel times versus trains as well as planes[2] over distances of under approximately 1,500 kilometres (930 miles).[3]
Elon Musk first publicly mentioned the Hyperloop in 2012.[4] His initial concept incorporated reduced-pressure tubes in which pressurized capsules ride on air bearings driven by linear induction motors and axial compressors.[5]
The Hyperloop Alpha concept was first published in August 2013, proposing and examining a route running from the Los Angeles region to the San Francisco Bay Area, roughly following the Interstate 5 corridor. The Hyperloop Genesis paper conceived of a hyperloop system that would propel passengers along the 350-mile (560 km) route at a speed of 760 mph (1,200 km/h), allowing for a travel time of 35 minutes, which is considerably faster than current rail or air travel times. Preliminary cost estimates for this LA–SF suggested route were included in the white paper—US$6 billion for a passenger-only version, and US$7.5 billion for a somewhat larger-diameter version transporting passengers and vehicles.[1] (Transportation analysts had doubts that the system could be constructed on that budget. Some analysts claimed that the Hyperloop would be several billion dollars overbudget, taking into consideration construction, development, and operation costs.)[6][7][8]
The Hyperloop concept has been explicitly "open-sourced" by Musk and SpaceX, and others have been encouraged to take the ideas and further develop them. To that end, a few companies have been formed, and several interdisciplinary student-led teams are working to advance the technology.[9] SpaceX built an approximately 1-mile-long (1.6 km) subscale track for its pod design competition at its headquarters in Hawthorne, California.[10]
Currently, aside from Sea-Tac airport IAF link in Greater Seattle, India is officially pursuing the hyperloop technology for Pune-Mumbai corridor.[11]

2020年8月21日 星期五

蝗蟲聚群秘密 隱形的信息素(化學物質)

中國科學家破解蝗蟲聚群秘密 有望為抗災鋪路

蝗蟲遮天蔽日,所到之處莊稼顆粒無收。圖片版權EPA
Image caption蝗蟲遮天蔽日,所到之處莊稼顆粒無收。
2020年伊始,東非、南亞等多國爆發了20年以來最嚴重的蝗災。重災區蝗蟲遮天蔽日,有些地區,蝗蟲過處莊稼顆粒無收。
一平方公里的蝗蟲群一天毀掉的糧食,足以可養活3萬5千人一年。
世界銀行估計,僅今年一年,蝗災就將造成65億英鎊(一英鎊約等於9元人民幣)的經濟損失。
毫無疑問,蝗蟲對農業、經濟和環境都構成重大威脅。破解蝗災原因一直是各國科學家不懈努力的重要課題之一。

蝗蟲聚群原因

今年非洲的蝗災是20年以來最嚴重的。圖片版權REUTERS
Image caption今年非洲的蝗災是20年以來最嚴重的。
最近,中國科學院動物研究所康樂教授團隊研究發現,讓蝗蟲聚集成群的可能是一種隱形的信息素。正是這種化學物質讓一種本來無害的昆蟲重新組合,使其成為瘟疫般的蝗災。
而通過識別這種信息素,研究人員相信他們已經找到了對付蝗蟲的可能辦法。
康樂院士稱,他們的研究不僅揭示了蝗蟲聚群成災的奧秘,同時也使未來研製控制蝗災新方法成為可能。
康樂團隊發現和確立了一種叫4-乙烯基苯甲醚(4VA,4-vinylanisole)的蝗蟲群聚信息素。
這一研究成果發表在國際學術期刊《自然》上。

「臭味相投」

圖片版權EPA
Image caption蝗災可以遮天蔽日,所到之處莊稼顆粒無收。
在正常情況下,蝗蟲過著孤獨無趣的生活。它們大部分時間生活在乾旱的草原上。但偶爾也會聚集成群,形成蝗災。
康樂教授說,中國人把蝗災、洪澇以及旱災看作是人類歷史上三大主要自然災害。
而其中蝗災分佈的範圍最廣,因此也是最危險的天災之一,對全球農業構成嚴重威脅。
康教授和團隊研究了蝗蟲釋放的所有化合物,其中4-乙烯基苯甲醚引起特別注意。
他們發現,這種臭味很強的分子吸引了其他蝗蟲,當蝗蟲聚集成群時,又會產生更多的臭味,從而召集更多的蝗蟲入群。

三種措施

蝗災極其恐怖圖片版權EPA
Image caption蝗災極其恐怖
發表在《自然》雜誌上的研究結果還提出了利用這一新發現有助研製的三種治蝗措施:
第一,通過設置信息素陷阱讓蝗蟲自投羅網而滅亡;
第二,通過基因改良工程,讓蝗蟲失去接收信息素的受體。如果讓沒有受體的蝗蟲進入蝗蟲群成功繁殖,那就不會發生蝗蟲聚群現象,但這一高科技方法難度更大;
第三,找到可以阻擾受體接收這種信息素的化學物質。這樣就會使蝗蟲的嗅覺失靈,無法聚群。
美國洛克菲勒大學的神經生物學家沃斯哈爾(Leslie Vosshall)女士就此發表評論認為,最後一個辦法最有希望。
她表示,信息素的發現有助於找到化學解藥。果真如此,將有可能避免未來蝗災的發生。因為到目前為止,人們還未掌握任何有效治蝗手段。

2020年8月20日 星期四

Ronald Ross discovered the link between mosquitos and malaria transmission on 20 August 1897:

科學史著名論文....

 

Ronald Ross discovered the link between mosquitos and malaria transmission on 20 August 1897:
"The work, which was continued from 8 a.m. to 3 or 4 p.m. with a short interval for breakfast, was most exhausting, and so blinding that I could scarcely see afterwards; and the difficulty was increased by the fact that my microscope was almost worn out, the screws being rusted with sweat from my hands and forehead, and my only remaining eye-piece being cracked, while swarms of flies persecuted me at their pleasure as I sat with both hands engaged at the instrument.
/ ... /
The seventh dappled-winged mosquito was then successfully dissected. Every cell was searched, and to my intense disappointment nothing whatever was found, until I came to the insect’s stomach. Here, however, just as I was about to abandon the examination, I saw a very delicate circular cell apparently lying amongst the ordinary cells of the organ, and scarcely distinguishable from them. Almost instinctively I felt that here was something new.”
From the Nobel Lecture 1902 by Ronald Ross. We can highly recommend reading his lecture even though it's 90 pages long: goo.gl/yNNtSr
Image: The page in Ross' notebook where he recorded the "pigmented bodies" in mosquitoes that he later identified as malaria parasites.

BASF launches its first global footwear innovation center in Taiwan 德尚巴斯夫全球第一個鞋材創新中心在台設立






BASF launches its first global footwear innovation center in ...
focustaiwan.tw › Business

6 日前 - Tainan begins trial run of driverless bus service · Taiwan researchers working on broadly effective flu vaccine · Taiwan ... The innovation site, the first of its kind for BASF, will also feature a slew of interactive footwear exhibits and will ... "Taiwan is Asia's hub for many footwear manufacturing firms and has a longstanding history with a powerful network of designers," Andy .


德尚巴斯夫全球第一個鞋材創新中心在台設立


該中心今後也將支援我們的策略夥伴與客戶直接取得各種先進技術和高性能材料,幫助他們在鞋類市場大步邁進。」
全球合作與材料創新,支援品牌充分發揮鞋類解決方案成長潛能
新成立的中心結合隆鼎實業最先進的製鞋技術和巴斯夫的鞋材專業知識,將協助各大品牌解決常見的技術挑戰、優化製程並提升效率。新設備可在更短的時間內完成創新材料的測試和改良,並以全球性規模來評估各項概念。巴斯夫曾與隆鼎實業合作推出 X-Swift 運動休閒鞋,結合巴斯夫研發的五種先進新材料,並由隆鼎實業以最新製鞋自動化科技製作。
提供一站式鞋材和製鞋解決方案
鞋材創新中心涵蓋了功能完備的運動力學實驗室,專供執行各項科學實驗,以開發效能升級、舒適度倍增、運動員表現更上層樓的全新鞋類解決方案。
鞋材創新中心規劃了三大主要區域:
·    材料設計區 — 此互動式展區介紹不同特性與功能的材料與作品,以激發與設計流程有關的靈感。該區主要展示了兩款高性能材料: Haptex™ 創新無溶劑低排碳合成皮革,可提升設計自由度與鞋面的生產效率;Freeflex™ 則是以 Elastollan® 製成的熱塑性聚氨酯 (TPU) 纖維,開拓了針織鞋面在設計上的無限潛能。
·    技術應用區 — 此沉浸式展區可激發靈感,打造具前瞻性的鞋類解決方案。此區展示多元材料,包括 Elastopan® 和聚氨酯 (PU) 解決方案,可提供更豐富的客製化產品、卓越的技術支援以及創造更佳的性能表現。而徹底革新機能鞋的發泡熱塑性聚氨酯 (E-TPU) Infinergy® 材料,目前已運用在安全鞋與皮鞋上。專精於 3D 列印的巴斯夫旗下品牌 Forward AM,偕同其他品牌開發出 Ultrasint® TPU 粉末和 Ultracur 3D® EL UV 樹脂等材料,以強大的減震功能和宛如橡膠質感的彈性著稱,非常適用於 3D 列印鞋材。
·     材料應用區 — 展出各種啟發靈感、別出心裁的設計案例,以引領後續的創意構想,攜手業界共同開創新的鞋類解決方案。此區並展出以 Infinergy SP 材料製成的運動跑道,該材質是巴斯夫開發的特別應用等級 E-TPU,經國際田徑總會 (IAAF) 認證的全密式PU跑道結構。創新中心並配備最先進的鞋材設計軟體、精密開模設備、自動化 PU 射出成型機和鞋面針織機,協助落實全新鞋款的創意設計。